Space Weather Diamond

An alternative to the Sentinels and Geostorms concepts, Space Weather Diamond offers 10X the L-1 warning of solar wind disturbances

 St. Cyr et al., Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1,251-1,255, 2000.

Fundamental Question

• What are the physics of the propagation and evolution of large-scale structures in the heliosphere?

Why is this question important?

 To improve significantly the lead time of space environment predictions (geomagnetic storms, energetic particle events, spacecraft charging, and human exploration)

Science Objectives

- Identify the structures of heliospheric features, including both radial and transverse gradients
- Separate spatial effects from temporal effects

Mission Description

- Four spin-stabilized spacecraft in eccentric heliocentric orbits, phased so that they appear to surround Earth
- Monitor spacecraft nearest Sun continuously for space weather prediction; the remaining three spacecraft operate autonomously and record data for periodic playback

Measurement Strategy

- Solar wind plasma, interplanetary magnetic field, radio burst detector, and energetic particle sensors on all spacecraft
- One spacecraft also carries a white-light heliospheric mapper

Technology Requirements

- Heritage designs available today
- Minimal risk for significant return